CHEM 108

Discussion Guide 1.7

Molecules/ Compounds/ Bonds and The Periodic Table

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International license.

Atoms & Molecules

Compounds & Chemical Bonds

Atoms in a compound (molecule) are in ratios of whole numbers with specific 3dimensional arrangements due to attractive inter-atomic forces (Bonds). These provide favorable energy states & spatial positions (lower energy & farther apart are better), which result in molecules having new chemical, physical, and biological properties.

Electrons, Configurations, & Bonds Noble Gases and The Rule of Eight

When a nonmetal and a metal combine, they form an ionic bond: Valence electrons of the metal are lost and the nonmetal gains these electrons to achieve a Noble gas electron configuration.

When two nonmetals combine, they form a covalent bond: They share electrons to achieve a Noble gas electron configuration.

Periodic Properties

http://chemconnections.org/general/movies/periodic-prop.MOV

Ionic Bonds

Result from electrostatic attractions of closely packed, oppositely charged ions.

Form when an atom which can easily lose electrons reacts with one which has a high electronegativity (electron affinity), that is, it can easily gain electrons.

I Eg. Mg and Cl; K and O

The Relationship Between lons Formed and the Nearest Noble Gas

Electron Configurations

Ionic Compounds

Neutrally Charged

- Eg. Salt: NaCl \rightarrow 1 Na⁺ and 1 Cl⁻
- What is the proportion of ions for a compound formed from Mg ion and chlorine?
- ^ŏ Mg²⁺ and Cl[−]
- δ 1 Mg²⁺ combines with 2 Cl⁻

MgCl₂

Ionic Compounds

Neutrally Charged Eg. Salt: NaCl \rightarrow 1 Na⁺ and 1 Cl⁻

Provide Formulas for the Compounds formed from the lons of the Atoms

	Na	Mg	In
CI			
N			
0			

from the lons of the Atoms

Name the compound.

Mg²⁺ and Cl⁻

Mg

Cl

Quantum Chemistry

The Relationship Between lons Formed and the Nearest Noble Gas

The Periodic Table

Discussion Guide 1.7

QUESTION

Predict the formula for the binary ionic compound formed by aluminum and oxygen.

A) AI_2O_3 B) AI_3O_2 C) AI_2O

D) AIO_2

Complete Self-Paced Tutorial

http://chemconnections.org/general/chem108/Nomenclature.htm

Ionic vs. Covalent Bonding

http://chemconnections.org/general/movies/ionic-covalent.mov

Polyatomic Ions

Carbonate ion $CO_3^{2^-}$

Common Polyatomic Ions							
lon	Name	lon	Name				
${\rm Hg_{2}}^{2+}$	Mercury(I)	NCS ⁻	Thiocyanate				
$\mathrm{NH_4}^+$	Ammonium	CO_{3}^{2-}	Carbonate				
NO_2^-	Nitrite	HCO_3^-	Hydrogen carbonate				
NO_3^-	Nitrate		(bicarbonate is a widely				
SO_{3}^{2-}	Sulfite		used common name)				
SO_4^{2-}	Sulfate	ClO^{-}	Hypochlorite				
HSO_4^-	Hydrogen sulfate	ClO_2^-	Chlorite				
	(bisulfate is a widely	ClO_3^-	Chlorate				
	used common name)	ClO_4^-	Perchlorate				
OH^-	Hydroxide	$C_2H_3O_2^-$	Acetate				
CN^{-}	Cyanide	MnO_4^-	Permanganate				
PO_{4}^{3-}	Phosphate	$Cr_2O_7^{2-}$	Dichromate				
HPO_4^{2-}	Hydrogen phosphate	$\mathrm{CrO_4}^{2-}$	Chromate				
$H_2PO_4^-$	Dihydrogen phosphate	O_2^{2-}	Peroxide				
		$C_2 O_4^{2-}$	Oxalate				

http://chemconnections.org/general/chem120/polyatomics.html

QUESTION

Which formula is correct?

A) $MgNO_3$ B) NH_4CO_3 C) $Na(PO_4)_3$ D) $AI_2(SO_4)_3$

Common Polyatomic Ions							
lon	Name	lon	Name				
${\rm Hg_2}^{2+}$	Mercury(I)	NCS ⁻	Thiocyanate				
NH_4^+	Ammonium	CO_{3}^{2-}	Carbonate				
NO_2^-	Nitrite	HCO ₃ ⁻	Hydrogen carbonate				
NO_3^-	Nitrate		(bicarbonate is a widely				
SO_{3}^{2-}	Sulfite		used common name)				
SO_4^{2-}	Sulfate	$C10^{-}$	Hypochlorite				
HSO_4^-	Hydrogen sulfate	ClO_2^-	Chlorite				
	(bisulfate is a widely	ClO_3^-	Chlorate				
	used common name)	ClO_4^-	Perchlorate				
OH^-	Hydroxide	$C_{2}H_{3}O_{2}^{-}$	Acetate				
CN^{-}	Cyanide	MnO_4^-	Permanganate				
PO_4^{3-}	Phosphate	$Cr_2O_7^{2-}$	Dichromate				
HPO_4^{2-}	Hydrogen phosphate	$\operatorname{CrO_4}^{2-}$	Chromate				
$H_2PO_4^-$	Dihydrogen phosphate	O_2^{2-}	Peroxide				
		$C_2 O_4^{2-}$	Oxalate				

Ionic Bonds

Result from electrostatic attractions of closely packed, oppositely charged ions.

Form when an atom which can easily lose electrons reacts with one which has a high electronegativity (electron affinity), that is, it can easily gain electrons.

I Eg. Mg and Cl; K and O

Electronegativity

http://chemconnections.org/general/movies/electronegativity.mov

Electronegativity

http://chemconnections.org/general/movies/Periodic-e.n.MOV

Covalent Bonding

	IA 1	1	Т	abla	of Da	ulina	Flor	tron	anth	dia a b	/ alua							
1	H	IIA	-	anie		unny	Elec	arone	egan	vity v	alue	s	TTLA	11/4	174	VTA	VIIA	He
	3	4	í –										5	6	7	8	9	10
2	1.0	Be 1.5											B 2.0	C 2.5	N 3.0	0	F 40	Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
	0.9	1.2	IIIB	IVB	VB	VIB	VIIB	126	-VIII	20	IB	IIB	1.5	1.8	2.1	2.5	3.0	36
4	K 0.8	Ca 1.0	Sc 1.3	Ti	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr
5	37 Rb 0.8	38 Sr 1.0	39 Y 1.2	40 Zr 1.4	41 Nb 1.6	42 Mo 1.8	43 Tc 1.9	44 Ru 2.2	45 Rh 2.2	46 Pd 2.2	47 Ag 1.9	48 Cd 1.8	49 In 1.8	50 Sn 1.8	51 Sb 1.9	52 Te 2.1	53 I 2.5	54 Xe
6	55 Cs 0.7	56 Ba 0.9	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl 1.8	82 Pb 1.9	83 Bi 1.9	84 Po 2.0	85 At 2.2	86 Rn
7	87 Fr 0.7	88 Ra 0.9	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112		114		116		

Lanthanides	58	59	60	61	62	63	64	65	66	67	68	69	70	Lu
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

QUESTION

For the elements Rb, F, and O, the order of increasing electronegativity is:

A) Rb < F < O. B) Rb < O < F. C) O < F < Rb. D) F < Rb < O. E) none of these.

Boundary Ranges for Classifying A lonic Character of Chemical Bonds

QUESTION

Atoms having greatly differing electronegativities are expected to form:

- 1) no bonds.
- 2) polar covalent bonds.
- 3) nonpolar covalent bonds.
- 4) ionic bonds.
- 5) covalent bonds.

ΔEN	IONIC CHARACTER
>1.7	Mostly ionic
0.4-1.7	Polar covalent
< 0.4	Mostly covalent
0	Nonpolar covalent

QUESTION

Atoms having the same electronegativity are expected to form:

- A) no bonds.
- B) polar covalent bonds.
- C) nonpolar covalent bonds.
- D) ionic bonds.
- E) covalent bonds.

ΔEN	IONIC CHARACTER
>1.7	Mostly ionic
0.4-1.7	Polar covalent
<0.4	Mostly covalent
0	Nonpolar covalent

Question

Which of the following bonds is the most polar?

(Collaborative)

Chem 108 / Dr. Rusey

Names:

Molecular Modeling Report Form

These pages replace the Molecular Model Lab, pp. 97-103, of the Chemistry 108 Experiments Lab Manual. Complete the following modeling related exercises and include the names of all group members, who contributed to the work, on the form.

The first column lists formulas for a number of compounds. The bonding type is to be determined for these compounds using differences in their respective electronegativity values (refer to the in class information). The second column is for the electronegativity difference, the absolute value of the difference in electronegativity between the 2 different atoms in the compound, $|EN_2 - EN_1|$.

The third column is for the average electronegativity of the two atoms, (EN1 + EN2)/2.

Compound	$ \mathbf{EN}_1 - \mathbf{EN}_2 $	$\frac{EN_1 + EN_2}{2}$	Bonding Type
HF	4.0 - 2.1 = 1.9	3.0	polar covalent
HC1			
HBr			
н			
CsF			
NaF			
CaO			
BaO			
NH ₃			
CH4			
CC14			
H ₂ O			
N ₂ O			
SO ₂			
H_2			
O ₂			

(Collaborative)

Chem 108 / Dr. Rusey

Names:

Molecular Modeling Report Form

These pages replace the Molecular Model Lab, pp. 97-103, of the Chemistry 108 Experiments Lab Manual. Complete the following modeling related exercises and include the names of all group members, who contributed to the work, on the form.

The first column lists formulas for a number of compounds. The bonding type is to be determined for these compounds using differences in their respective electronegativity values (refer to the in class information). The second column is for the electronegativity difference, the absolute value of the difference in electronegativity between the 2 different atoms in the compound, $|EN_2 - EN_1|$.

The third column is for the average electronegativity of the two atoms, (EN1 + EN2)/2.

Compound	$ \mathbf{EN}_1 - \mathbf{EN}_2 $	$\frac{EN_1 + EN_2}{2}$	Bonding Type
HF	4.0 - 2.1 = 1.9	3.0	polar covalent
HC1			
HBr			
н			
CsF			
NaF			
CaO			
BaO			
NH3			
CH4			
Comple	ete first	& secon	d pages
N ₂ O	b be che	ecked in	lab.
SO ₂			
H ₂			
O ₂			

Chemical Formulas & Molecular Representations

http://chemconnections.org/general/movies/Representations.MOV

Proteins & Small Molecules

The interaction of a large protein bio-polymer, acetylcholinesterase, with a relatively small molecule of acetylcholine. A general process similar to the way that scientists that think we smell and many physiological processes.

http://chemconnections.org/general/movies/richard.mpg

Detecting stuff we cannot see: the Sense of Smell Models, Theories & Interactions

http://chemconnections.org/organic/chem226/Labs/Smell/smell-links.html

Vanillin (Smell) Sensitivity ~ 1 x 10⁻⁵ mol / m³_{air}

isoamyl acetate (banana)

methyl salicylate (wintergreen)